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Steady propagation of a coherent light pulse in a dielectric 
medium: I11 Dynamical behaviour of a long pulse 

K Ikedai and 0 AkimotoS 
t Department of Physics, Kyoto University, Kyoto, Japan 
f The Institute for Solid State Physics, the University of Tokyo, Roppongi, Tokyo, Japan 

Received 29 November 1978 

Abstract. The dynamical process by which the steady propagation of a coherent light pulse 
of long width takes place in a dielectric medium is studied. In the absence of direct 
interaction between atomic dipoles, the nonlinear polariton is unstable against a small 
perturbation and develops self-modulation of its envelope. Nonlinear Schriidinger equa- 
tions describing this self-modulation are derived for the two cases where the carrier wave 
frequency lies outside and inside the polariton gap. It is shown that an arbitrary incoming 
pulse of long width outside the polariton gap evolves as composite pulse of multiple peak 
structure, which is regarded as a bound state of the steady pulses obtained in a previous 
paper. The evolution process of a pulse inside the polariton gap and the effect of direct 
interaction between atoms are also discussed. 

1. Introduction 

In previous papers (Akimoto and Ikeda 1977, Ikeda and Akimoto 1979, referred to as I 
and I1 respectively), a systematic method has been developed to treat the steady 
propagation of a coherent light pulse in a dielectric medium, paying special attention to 
the effect of polariton formation. It has been shown in I that the behaviours of steadily 
propagating pulses are determined by the relative magnitude of three quantities: the 
time width of the pulse 7, the polariton gap frequency 00 which is proportional to the 
density of atomic dipoles in the medium, and the difference Aw between the carrier 
wave frequency of the pulse and the resonant frequency of the medium. It has also been 
shown that there exist two types of pulses having qualitatively different characters, that 
is, the short pulse (T-'>> [Awl, IAw -wGI) and the long pulse ( T - ~ < <  \Awl, IAo -wcl). In 
11, the effect of direct interaction between atomic dipoles has been studied. It has been 
found there that such an interaction brings about, besides the usual pulse propagating in 
the form of the radiation field (optical pulse), another type of pulse which contains little 
photon component and propagates by means of the excitation transfer inherent in 
interacting dipoles (exciton-like pulse), and that a long pulse of the optical character, 
which we call the polariton-soliton, can exist only in a limited range of frequency. 

The short pulse is nothing but the well known pulse of self-induced transparency 
(SIT), which has a hyperbolic secant shape and pulse area of 27r (McCall and Hahn 
1969). As has been studied in detail by Lamb (1971, 1974), the SIT pulse can be 
described by a stable soliton solution of a sine-Gordon equation which is derived as a 
simplified version of the Maxwell and the optical Bloch equations. More generally, any 
incoming pulse of short width obeys such a sine-Gordon equation and decomposes into 
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several steady pulses with the increase of propagation distance. (For various properties 
of the sine-Gordon equation, see e.g. Ablowitz et a1 1974; for behaviours of the SIT 
pulse as a soliton, see also Eilbeck et a1 1973.) As for the long pulse, on the other hand, 
such a study has not been tried so far. The purpose of the present paper is to discuss the 
stability of the long pulse and its dynamical process through which the pulse tends to 
steady propagation. Since the long pulse shows quite different behaviours outside and 
inside the polariton gap, reflecting the anomalous dispersion near the resonant 
frequency, our discussions will be given separately on these two cases. 

Our starting equations are the Maxwell equation 

[(a/aZ-iQ)2-(i+p C ? / ~ T ) ~ ] E =  ( i + k  8IaT)'U (1.1) 

i aU/aT= [A-j ' (w + l ) + j w ( Q + i  a /aZ)2 ]U-Ew (1.2) 

and the optical Bloch equation derived in I1 

in which the interaction between dipoles is also taken into account. The notation is as 
follows: E and U are the slowly varying envelopes of the electric field and of the 
macroscopic polarisation per unit volume respectively; the rapidly oscillating carrier 
waves exp[i(wt -Kz)] have been separated out from them. The quantities E and U are 
in general complex and have been made dimensionless by scaling them by 27rNh~  and 
N h ~ / 2  respectively, where N is the dipolar density and K the dipole matrix element 
divided by h/2. The quantity w is the population difference between the ground and 
excited states and is related to U through 

(1.3) 2 IUI2+w = l .  

Time T and distance Z as the independent variables in equations (1.1) and (1.2) have 
been scaled by ( 2 7 r N h ~ ~ ) - '  and c/w respectively, so that they are also dimensionless. 
The frequency and the wavenumber of the carrier wave are denoted by A and 0 
respectively, where A is measured from the resonant frequency of the exciton with 
K = 0 and is scaled by the polariton gap frequency, while Q is scaled by w/c, i.e. 

A = ( @  - ~ ~ ) / 2 7 r N h ~ ~ + j ' ,  Q = cK/w. (1.4) 

The dimensionless parameters j and j ' ,  which have been introduced in 11, characterise 
the direct interaction between dipoles; the exciton dispersion due to this interaction is 
given, in the limit of E + 0, as 

WQ = wo + 2?rNh~*(-j'  +io2). (1.5) 

Finally, p is a small parameter defined by p = 2 7 r N h ~ ~ / w  and will safely be set equal to 
zero in the following discussions. 

The plan of the present paper is as follows. First, we discuss in 0 2 the stability of a 
nonlinear polariton which is described by the homogeneous solution of equations (1.1) 
and (1.2). We do this from the consideration that the electromagnetic wave produced in 
the medium by an arbitrary but sufficiently long incoming wave can approximately be 
regarded as a nonlinear plane wave. By superposing a spatially modulated wave of 
small amplitude as a perturbation on the nonlinear plane wave and observing its time 
development, it will be found that the nonlinear polariton is in fact unstable against a 
perturbation and amplifies the initial modulation. The space and time scales 
(wavenumber, propagation velocity and growth rate) of the most rapidly growing 
modulation wave will suggest that the nonlinear polariton tends to self-decompose into 
an assembly of pulses, each of which is simply the steady pulse obtained in I. On the 
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basis of these space and time scales, we apply in 00 3 and 4 the method of reductive 
perturbation expansion to our problem and show that the motion of a wave packet of 
sufficiently long width obeys a nonlinear Schrodinger equation. This equation has 
different forms outside and inside the polariton gap and their soliton solutions coincide 
with the steady solutions obtained in I. Applying the initial value problem of the 
nonlinear Schrodinger equation studied by Zakharov and Shabat (197 1) to our 
equations, we discuss semiquantitatively in 0 5 by which process an arbitrary incoming 
pulse develops self-modulation and comes to propagate as an assembly of several 
steady pulses. In §§ 2-5, we neglect for simplicity the effect of spatial dispersion and set 
j and j ’  in equation (1.2) equal to zero. More general discussions involving this effect 
will be given in § 6. 

2. Instability of the nonlinear polariton 

Equations (1.1) and (1.2) admit the homogeneous solution E =Eo and U = Uo, which 
describes the nonlinear polariton, if the dispersion relation 

(2.1) 
is satisfied. The right-hand side of equation (2.1) defines the field-dependent dielectric 
function ;(A, /Eo/), which relates U. to Eo through 

Q2 = 1 - A-’[l+ (IEo1/A)2]-1’2 

uo=[;(A, IEoI)-1IEo- (2.2) 
In the limit of Eo+O, equation (2.1) is reduced to the dispersion relation of the usual 
(linear) polariton 

Q ~ = ~ - A - ’  (2.3) 
which has the frequency gap 0 < A < 1 in which no plane wave can propagate because of 
negative ;(A, 0). We call this frequency gap the polariton gap. For a plane wave of 
sufficiently large amplitude satisfying 

(2.4) 
however, ;(A, /Eo/) becomes positive even for O C A <  1 and enables the wave to 
propagate in the medium. 

Suppose that a spatially modulated wave of small amplitude, described by 
SE exp[i(WT - OZ)] and SU exp[i(WT - &)I, is superposed? as a perturbation on the 
plane wave with Eo and A; if this perturbation wave grows with time, the plane wave is 
unstable. Substituting the superposed wave for E and U in equations (1.1) and (1.2) 
and linearising these equations with respect to the coefficients SE and SU, we obtain W 
as a function of 0 as follows: 

]Eo[  > E t h  = (1 - 

where 
f(Q)=(1-Q~))”(l-Q’-~2)A2-(1-Q2-Q2)2+4Q2Q2 (2.6) 

t By this notation, we mean that each of the real and imaginary parts of E and U is subject to a sinusoidal 
modulation. These modulations, or equivalently the modulations of amplitude and phase, couple to each 
other through the Maxwell-Bloch equations. This coupling is essential for inducing the instability. 
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and Q is related to Eo and A through equation (2.1). It can be seen from equations (2.5) 
and (2.6) that W(6) has an imaginary part Wi(Q) for small 6. This means that the 
modulation wave of long wavelength grows with time; that is to say, the nonlinear 
polariton is unstable against such a perturbation. At the same time, this modulation 
wave propagates with the group velocity dW,,(b)/dd (= VJ. 

Let us estimate the growth rate of the most rapidly growing modulation wave; such a 
modulation wave will determine the gross features of the unstabilised nonlinear plane 
wave. For simplicity, we confine ourselves to the case of IEo/AI<< 1, i.e. a weakly 
nonlinear case. Inside the polariton gap, this condition is meaningful only near the 
upper edge of the gap A = 1 because the nonlinear plane wave itself is allowed to exist 
only when lEol > (1 -A2)'12. Under this condition, the range of 6 in which W(6) 
becomes complex is obtained as 

161 <bc=A-2(4-3/A)-"21Eol .  (2.7) 

The wavenumber 6, which maximises the growth rate W i ( 6 )  is given by 0, = a,/ J2; 
the maximum growth rate is 

(2.8) 

This means that the nonlinear plane wave develops self-modulation and decomposes, 
after the characteristic time T, = (Wi(O,))-', into an assembly of wave domains whose 
spatial width is given by 1, = 6,' = J2/6,. The explicit expressions of 1, are given as 
follows: For A > 1 or A < 0 (outside the polariton gap), 

1,- J 2  A2(4-3/A)'12/EJ1.  (2.9) 

Wi ( 6,) = IEo~*/ 2 I AI - 

For 0 < A < 1 (inside the gap), 

I ,  - J 2  IEol-'< J 2  E;' (1 - A)-''2. (2.10) 

These relations agree, apart from numerical factors, with the corresponding ones for the 
steady pulses derived in I, i.e. the relations between the spatial width and the amplitude 
of the pulse. This fact suggests that each of the wave domains into which the nonlinear 
plane wave decomposes is simply the steady pulse obtained in I. 

For frequencies inside the polariton gap but not very close to its upper edge, the 
above results (2.7)-(2.10) derived for lEol<< 1 are no longer valid, because for such 
frequencies Eth is of the order of unity and therefore ]Eo[ B 1 is necessary for the 
electromagnetic field to propagate in the medium. Also in this case, however, the fact 
remains that the nonlinear polariton is unstable. For instance, it can easily be seen from 
equations (2.5) and (2.6) that the nonlinear polariton just satisfying lEol = Eth, i.e. 
Q = 0, is in fact unstable against a modulation whose 6 is given by 

101 < 6, = (1 - A2)'" (2.1 1) 

where 6, is of the order of unity. 
Instability of the system described by the Maxwell-Bloch epuations has been 

studied also by Zel'dovich and Sobel'man (1971), Courtens (1974) and Armstrong 
(1975). Their results are somewhat different from ours and may be expressed in our 
language as follows: The nonlinear plane wave is unstable against a perturbation of any 
wavenumber 6, making 6, infinite, and has a growth rate proportional to 6. 
Consequently, any incoming wave acquires a singularity in its shape as it propagates 
(self-steepening; Armstrong 1975). These results are attributable to the fact that, in 
their treatment, the second-derivative terms in the Maxwell-Bloch equations are partly 
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neglected, although a balance of those terms plays the essential role of relaxing the 
self-steepening and making the appearance of a steady pulse possible. Of course, 
provided the discussions are confined to the initial stage of the self-steepening, their 
treatment is reasonable enough. 

Before concluding the present section, we note that Gurovich and his co-workers 
(Gurovich and Karpman 1969, Gurovich et a1 1969) treated a problem similar to ours 
but for liquids and plasmas with negative dielectric constant. They pointed out that, in 
these media, a nonlinear solitary wave of low amplitude shows steady propagation as a 
consequence of the instability of a nonlinear plane wave. 

3. Nonlinear Schrodinger equation describing self-modulation of the nonlinear polari- 
ton--outside the polariton gap 

The linear theory developed in the preceding section is valid only when the amplitude of 
the modulation wave superposed on the nonlinear polariton remains sufficiently small. 
In this and in subsequent sections, we derive equations which describe the whole 
process of evolution of the self-modulation, assuming that the initial amplitude of the 
electric field of the nonlinear polariton is small. 

Outside the polariton gap, a modulation wave generated on a weakly nonlinear 
plane wave propagates with nonzero group velocity 

(3.1) 
as can be seen from equations (2.6) and (2.1 1). This leads us to choose Z and T -Z/ V, 
as the independent variablest. The most unstable modulation wave then evolves like 

exp[i(c;(Q,)T- Qm~)I=exp[~i(dm) v;'z] exp[(iQ,V,+c;i(Q,))(T-Z/ vP)]. 
The characteristic constants of this evolution are given by (6i(&))-'V, and 
min{&'V;', (Wi(&,))-'}, or in other expressions, TcVp and min{lcV,', Tc}. 

Considering that a weakly nonlinear wave is characterised by the condition E/A - 
U<< 1,$ let us introduce here a small parameter e of the same order as these quantities 
and scale all the variables by this parameter. Observing the orders of magnitude 
T,V, - O(E-~A) ,  lcV;' - O(E-'A-') and Tc- O(E-~A-')$,  we transform the indepen- 
dent variables into a new set 

V, = 2A2( 1 - 

q = e2A-'Z 

j = E A( T - Z/ V,) 

and expand the electric field and the polarisation as 
2 (2) E/A=EIL(%, V ) + E  IL (5, v ) + .  . . 

U=ed(')(5, V I + €  d (5,77)+ * - 2 (2) 

(3.2) 

(3.3) 

so that +(")(e, q) and d'"'(5, q) may be of the order of unity and that their variation may 
become first noticeable when 6 and q vary to the extent of unity. This idea has been 

t For the purpose of discussing the boundary value problem, we have chosen the independent variables as in 
the text. It is also possible to make another choice, 2 - V,T and T. This choice is appropriate for discussing 
the initial value problem. 
$The steady solution of a long pulse also satisfies this condition, as can be seen from equation (5.13) in I. 
8 These order estimations involving A are valid for any value of A except in the vicinity of A = 0 or 1. 
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If the fact is once known that E obeys a nonlinear Schrodinger equation, as is the 
case in equation (3.8), it is possible to represent this equation in a more general form, 
expressing its coefficients in terms of the dielectric function. This can be performed as 
follows. We note first that the nonlinear Schrodinger equation of the form (3.8) has, 
besides the soliton solution, a plane wave solution Eo exp[i(A’T - Q‘Z)], where A and 
0’ are related to the coefficients in the equation as 

(3.10) 

a and c denoting the coefficient of the second-derivative term and that of the 
self -potential term respectively. The above solution, when multiplied by the carrier 
wave exp[i(AT- QZ)], on the other hand, must be the nonlinear plane wave solution of 
the original Maxwell-Bloch equations, so that A + A’ and Q + Q‘ satisfy the nonlinear 
dispersion relation 

(3.11) 

Q’ = A’/ Vp- aAt2 + clEo12 

(Q + Q’)2 = ;(A + A’, IEol) 
while the linear dispersion relation 

Q2 =;(A, 0) 

holds between A and Q. From these two relations, we obtain 

(3.12) 

(3.13) 

where we have expanded the field-dependent dielectric function as 

;(A, lEI2) = &(A) + &(A)1EI2 + . . . (3.14) 

and have denoted d[(ZO(A))’l2]/dA by [(Eo(A))”2]’, etc. By comparing equations (3.10) 
and (3.13), a and c are expressed in terms of the dielectric function and its derivatives. 
The general form of (3.8) is thus 

where 
V, = 1/[(&(A))’l2]’ = 2E;(A)/(&(A))’l2, 

(3.15) 

(3.16) 

This expression is useful because it holds also in the presence of spatial dispersion, i.e. in 
the case where a direct interaction between atomic dipoles is taken into account. In 0 6, 
discussions of dynamical properties will be given on the basis of this expression. A 
similar nonlinear Schrodinger equation whose coefficients are expressed in terms of the 
dielectric function has already been used in the problem of self-focusing (Kadomtsev 
and Karpman 1971). 

4. Nonlinear Schrodinger equation describing self-modulation of the nonlinear polari- 
ton-inside the polariton gap 

Inside the polariton gap, a weak electromagnetic field such that \El <Eth = (1 - A2)l12 
cannot propagate in the medium because it makes ;(A, /El) negative. Therefore the 
usual reductive perturbation method for strongly dispersive media, as that used in 0 3, 
can no longer be applied to the present case. As will be shown below, however, a similar 
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perturbational treatment is possible also in the present case, by making a special choice 
of the expansion parameter. 

Let us first assume \El 3 E t h .  Confining ourselves to the vicinity of the upper edge of 
the polariton gap ( A =  l ) ,  where Eth<< 1 is satisfied, we introduce a small parameter 

E = (1 -A)1'2-E,h/J2. (4.1) 

Since V, is now a small quantity of the order of E ,  it is no longer meaningful to re-define 
the independent variables as has been done in 5 3. Observing that the characteristic 
constants of the most unstable modulation wave exp[i(G(&)T - b , Z ) ]  are estimated 
as T,- O ( E - ~ )  and I, - O(E-'), we introduce the stretch transformation 

7 =E2T 

e=EZ 

and expand E and U as 
E = E*"'(& 7) + E 2 * (2) (6, 7)) + . . . 

u=Ef$"'(& ? - / ) + E  4 (5, 7)+. . . .  2 (21 

(4.2) 

(4.3) 

The balance equations for (1.1) and (1.2) are obtained as follows. To the order of E ,  

(4.4) 

We note that A = 1 -E' has been used in deriving these equations. In order for the two 
equations in (4.4) to be compatible, Q = 0 is required. This indicates the fact that the 
carrier wavenumber of a pulse inside the gap tends to zero in the limit of long pulse, as 
has been shown in I. With the condition Q = 0, the two equations in (4.5) are identical. 
By eliminating t,b'3'+ 4(3) from the two equations in (4.6) and using (4.4), the nonlinear 
Schrodinger equation for $(I) is obtained?: 

i a ~ ( ~ ) / a q  = (a2/at2 - 1 + + 1 ~ ( 1 ) 1 2 ) ~ ( 1 )  (4.7) 

or in the original coordinates, 

i aE/aT = (a2/dZ2 - 1 + A  +ilEI2)E. (4.8) 

t In the text, /El - 1 has been assumed in deriving equation (4.7). However, even if /El is much larger 
than E&, this equation is valid as far as IEl<< 1 is satisfied. For IEl, the order of magnitude of which is given by 
\El I(&,)' (0 < S < I), in fact, we need only replace the definition of E by E = (1 -A)"'; this leads to the 
equation 

i a$"'/at, = (a2 /a~2+t /c / l ' 1 ' /Z )~" '  
which is the same one as equation (4.7) if c/l"'>> 1, i.e. IEl >>Et,,, is assumed. 
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The soliton solution of equation (4.8) is given as 

E = 2(1 -A+ K ~ ) ~ ' ~  exp(-iKZ) sech[(l +A+ K ~ ) ' / ~ ( Z  - ~ K T ) ]  (4.9) 

where K is an arbitrary parameter. In the limit of K -* 0, equation (4.9) reproduces the 
expression which lill be obtained by setting A =  1 in (5.16) in I, i.e. the steady pulse 
solution inside the gap. If A = 1 is assumed in equation (4.9), it reproduces equation 
(5.22) in I, i.e. the steady pulse solution at the upper edge of the gap. Note that, when 
equation (4.9) expresses a propagating pulse, the peak value of /El is larger than 
2( 1 - = J 2  Eth; this reflects one of the characteristics of the nonlinear polariton 
itself inside the gap. 

In the same way as has been done in 3 3, equation (4.8) can also be expressed by 
using the field-dependent dielectric function as follows: 

1-=- . aE ( - +;b(l)(A-l)+Z2(l)/E12)E 
aT ;b(i)  az2 (4.10) 

where 
;b (1) = d<o(A)/dAlA= 1. 

For frequencies inside the polariton gap but not very close to its upper edge, 
equation (4.10) can no longer describe the process of self-modulation satisfactorily. 
Instead of equation (4.10), let us use its generalised form 

(4.11) 

and see that this equation is appropriate for the present case. Here, Cb(1) and 
;b ( l ) ( A  - 1) + C2( 1)lEI2 in equation (4.10) are replaced by ;'(A, /El) and ;(A, (El) 
respectively, by seeing that the former are power-series expansions of the latter for 
A = 1 and /El = 0. (Note that do(l) = 0.) It can easily be shown that equation (4.1 1) has a 
steady pulse solution of the form 

E = f ( Z  - VT) exp[i4 (2 - VT) - ~KZ]  

involving a phase modulation, and that in the limit of V=O, this solution exactly 
reproduces the previously derived solution of long pulse inside the gap, i.e. equations 
(5.16)-(5.19) in I. It is also possible to justify equation (4.1 1) on the basis of the original 
Maxwell-Bloch equations if we confine ourselves to the case where the time evolution 
of their solution is sufficiently slow and the polarisation can adiabatically follow the 
electric field. In reality, however, the characteristic time T, introduced in 3 2 is not very 
long in the present case, so that there appears a stage in which the time evolution is not 
so slow. Therefore, it is not obvious whether equation (4.11) can well describe the 
whole process of self-modulation of an arbitrary incoming pulse of sufficiently long 
width. 

5. Dynamical properties of self-modulation 

The initial value problem of the nonlinear Schrodinger equation such as equations (3.8) 
and (4.8) has been solved by Zakharov and Shabat (1971), who resorted to the inverse 
scattering method developed by Gardner er a1 (1967). On the basis of their results, we 
discuss in the present section the dynamical behaviours of an arbitrary incoming pulse. 
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Suppose that a field U defined in space-time (p, U) obeys a nonlinear Schrodinger 
equation 

iau/acr=[a a 2 / a p 2 + ( b + ~ ( ~ / 2 ) ] u  (5.1) 

where a, b and c are real constants and satisfy ac > 0. As has been shown by Zakharov 
and Shabat, equation (5.1) has a family of steady solutions 

U, =(?) P, sech[2P,(p -4a,aa-po)] exp{i[-bu+4a(a: -@;)~-2a , ,p  +eo]} 

(5 .2 )  
each of which describes a soliton characterised by parameters a, and P, as well as 
arbitrary constants po and Bo. An arbitrary field u(p,  U) comes to behave, asymptotic- 
ally with the increase of U, as an assembly of these solitons, the parameters of which are 
determined by the initial form of U, i.e. u(p,  0) = uo(p) (we assume uo(*too) = 0). These 
parameters are in fact given as the real and imaginary parts respectively of the complex 
discrete eigenvalues y, = a, +iPn of the two-component equation 

112 

with the boundary condition ui(*too) = O f .  Especially, if uo(p) is a real function of p 
except a constant phase factor, one has a, = 0. Consequently the group velocities 4a,a 
of all solitons become zero. This means that, startingfrom such a uo(p), the field u(p,  U )  

does not split into individual solitons but evolves as a bound state of them. If uo(p)  is 
also a slowly varying function of p, equation (5.3) can be approximated by a Schrodinger 
equation 

( a 2 / a p 2 + y 2 +  (c/2a)lu(p)12)u1(p) = 0 (5.4) 

whose discrete eigenvalues y, are purely imaginary. These eigenvalues are approxi- 
mately obtained by using the Bohr-Sommerfeld quantisation condition 

J 

where P’, = -7:. 
Let us apply the above results to equation (3.8), the nonlinear Schrodinger equation 

describing self-modulation of the nonlinear polariton outside the polariton gap. As 
variables T-Z/V,  and 2 in equation (3.8) correspond to p and U respectively, the 
boundary value problem of equations (3.8) is equivalent to the initial value problem in 
space-time (p,  U ) .  Assume a non-chirped, symmetric and slowly varying pulse incident 
at the boundary 2 = 0 and express its envelope as 

(5.6) 

where To is the time width of the pulse, f ( x )  a real even function satisfying f(0) = 1 and 
f ( * c o ) = O ,  and Eo a complex constant whose absolute value represents the pulse 
amplitude. Such a pulse makes yn, the eigenvalues of equation (5.3), purely imaginary, 
so that it evolves as a bound state of solitons propagating with the same group velocity 

E ( T, 2 = 0)  = Eo f ( T/ To) 

t The general solution of equation (5.1) involves, besides the nonlinear (soliton) components, linear 
components which correspond to the continuous eigenvalues of equation (5.3). However, contribution of the 
latter to a whole pulse vanishes with time in accordance with the diffusion of linear Schrodinger wave packets, 
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V,. This behaviour is quite different from that of the SIT pulse, which splits into solitons 
propagating with different velocities. 

The solitons in a bound state have different wavenumber shifts 41a I& (5 K,,), where 
the ip,, are given as the eigenvalues of equation (5.4). By approximatingf(x) near x = 0 
by a quadratic function and making use of the quantisation condition ( 5 3 ,  they are 
calculated as 

p', = p ;  -(n ++)r ( n  = 0, 1 ,2 ,  . . .) (5.7) 

The approximation used is good enough for small n. Due to these different wavenum- 
ber shifts the phase differences between the solitons accumulate with the increase of 
propagation distance, so that the incoming pulse (5.6) will change its shape. The 
distance 2, traversed by the pulse before its gross shape changes to a considerable 
extent is measured by T K ~ & ,  where K , , , ~  is the maximum value of K,,. By using (SA), 2, 
is estimated as 

The time required for this change is given by Z,/ V,, which coincides with T, derived in 
$ 2  apart from a numerical factor. As the pulse propagates further, the phase 
differences between two constituent solitons successively approach T and the envelope 
E comes to appear as a composite pulse of multiple-peak structure. The distance Z b  

required for this process is measured by T(K,+' -K,,)- ' ,  i.e. the reciprocal of the 
difference of two adjacent K,, and is estimated as 

z b -  T ( K , + ~  - IC,,)-' - T A ~ ~ A -  ll((4-3A-') lf'(0)l)-1/2(To/lEol). (5.10) 

The maximum amplitude of this multiple pulse is roughly estimated by the amplitude of 
the constituent soliton with n = 0, which is given by (&3a/c)p,,; this is equal to 21E01, i.e. 
twice the amplitude of the electric field of the incoming pulse. 

Armstrong (1975), who discussed self-steepening of a light pulse in gaseous media, 
introduced a critical distance Zcrit as the distance traversed by the pulse before its shape 
becomes singular. It is notable that for A >> 1, our Z b  is nearly equal to his Zcrit, although 
the pulse never becomes singular in our treatment. The appearance of singularity in 
Armstrong's theory should be attributable to the approximation used there, which is 
equivalent to the partial neglect of the second-derivative terms in equation (3.7). 

So far we have assumed that the incoming pulse is non-chirped. If it is chirped, then 
the eigenvalues of equation (5.3) are generally complex, i.e. a,, # 0, so that the solitons 
(5.2) propagate with different group velocities, and thus the incoming pulse splits into 
them. If we define the effective pulse area by 

(5.11) 

the number of the solitons appearing after this split, which is equal to the number of the 
discrete eigenvalues of equation (5.3), is given by A / ~ T ,  as can be calculated by using 
equation (5 .5 ) .  It is interesting to see that for A >> 1, A in equation (5.1 1) becomes equal 
to the pulse area defined by McCall and Hahn (1969), although their area was originally 
introduced for short pulses with A = 0. 
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Let us now proceed to equation (4.8), the nonlinear Schrodinger equation describ- 
ing self-modulation of the nonlinear polariton inside the gap. In this case, variables 2 
and T correspond to p and (+ respectively, in contrast to the case of ‘outside the gap’. so 
that the initial-value problem in space-time (p, U) is equivalent to the initial-value 
problem of equation (4.8): not the boundary problem. Therefore, if an initial pulse is 
once introduced into the medium, it is straightforward to see how this pulse behaves 
hereafter; it will develop self-modulation and come to behave as an assembly of solitons 
(4.9). The questions are how a pulse incident on the boundary of the medium gets into it 
and what kind of initial pulse is formed in the medium. This may roughly be considered 
as follows. If the electric field of the incident pulse is weak enough, the pulse is totally 
reflected on the boundary of the medium. An incident pulse whose amplitude Eo 
exceeds Ethr on the other hand, can propagate in the medium. If its time width To is 
sufficiently long, it is approximately regarded as a nonlinear polariton with wavenumber 

Q o -  (2(A, lEol))1’2-[(E~ -Efi,)/2I1” 

and group velocity 

dC(A, lEol)/aA - 2Qo. 

It is therefore reasonable to assume an initial pulse with wavenumber Qo and spatial 
width I,-2QoTo in the medium. Self-modulation of such an initial pulse can then be 
described by solving the initial-value problem of equation (4.8); our arguments go 
parallel to those in the case of ‘outside tht  gap’, except that the eigenvalues y,, have a 
real part cy, of the order of Q0/2. The existence of a,  means that the pulse propagates 
with field-dependent velocity V,  = 4a,,a - [2(Ei -E:h)]1’2, if the velocity differences 
between the constituent solitons are neglected. From the same consideration as that in 
the case of ‘outside the gap’, it is known that the gross shape of the pulse changes after a 
time T, - /Eel-*, and that a multiple-peak structure appears in the pulse after Tb -- 
io/lEol. In contrast to the case of ‘outside the gap’, however, it may be probable that, 
after the time Tb, the pulse will no longer remain a bound state of constituent solitons, 
but will have already split into them as a consequence of their different velocities 4cy,u. 
To make a more detailed description of such a behaviour, however, it is required to 
solve the boundary problem of equation (4.8) exactly; this is still open for further 
investigations. 

6. The effect of interaction between atomic dipoles 

In the preceding sections, we neglected the effect of direct interaction between atomic 
dipoles, setting parameters j and j ’  in equation (1.2) equal to zero. As has been shown 
in 11, this effect brings about two kinds of steady pulse solutions: one propagating in the 
form of the radiation field (optical solution) and the other by means of the excitation 
transfer between atoms (exciton-like solution). Let us briefly discuss here how this 
effect is reflected in the dynamical properties of a long pulse, confining ourselves to the 
optical solution. (The optical solution is the solution which corresponds to that 
obtained in I, i.e. in the case of no direct interaction.) 

It has been shown in I1 that the parameter j (<< 11, which gives rise to the 
K-dependence of the dielectric function, does not appear in the final expression of the 
long pulse solution of the optical character, while j ’  (-O( 1)) makes a drastic change of 
the solution, affecting the existence of the steady solution itself, besides a trivial shift of 



Coherent light pulse in a dielectric medium: III 1919 

the resonant frequency as seen in equation (1.4). The same thing is expected in the 
discussion of dynamical properties. It is straightforward to extend the results in the 
preceding sections so as to take j ’  into account. Namely, we should only regard the 
dielectric function ;(A, \El) in equations (3.15) and (4.10) as the j’-dependent onet: 

(6.1) 
Equations corresponding to (3.8) and (4.8) are then obtained by setting &(A) in 
equations (3.15) and (4.10) equal to (A-j’)/2A4 instead of l /2A3.  The result produced 
by such a simple replacement is by no means trivial. In fact, the coefficient of the 
second-derivative term and that of the self-potential term in equations (3.8) and (4.8) 
have the same sign only when 

A > j ’  or A < O  (6.2) 
so that the soliton solution of those equations can exist only in this limited range of 
frequency. The amplitude of the soliton solutions which correspond to equations (3.8) 
and (4.8), if they exist, should be multiplied byafactor (1 -j’/A)1’2. Furthermore, it can 
be shown that the frequency range in which the nonlinear polariton becomes unstable in 
accordance with the existence of soliton solutions is also limited to equation (6.2). 

The effect of j ’  on the nonlinear polariton inside the polariton gap is especially 
remarkable. Jn dielectric media with j ’ >  1, not only a soliton but also the nonlinear 
plane wave of the optical character, however intense it may be, cannot propagate in the 
frequency range 0 < A < 1. It is because the threshold frequency below which the upper 
branch of the dispersion curve of the nonlinear polariton disappears is given by 

;(A, /E( )  = 1 - l / A  +[(A -j‘>/2A4])EI2 + . . . . 

If j ’  > 1, it increases from Ath = 1 with the increase of IEI, although it decreases if j ’  < 1. 
A typical example of such a medium with large j ’  is ionic or semiconducting crystals in 
which the Wannier exciton model is well applicable. 

7. Concluding remarks 

We have studied the dynamical process through which the steady propagation of a 
coherent light pulse of long width takes place in a dielectric medium. The results are 
summarised as follows. In the absence of direct interaction between atomic dipoles, the 
nonlinear plane wave of polariton is unstable against a small perturbation and develops 
self-modulation of its envelope. 73is also holds true for any incoming pulse of 
sufficiently long width. The evolution process of self-modulation is  described by the 
nonlinear Schrodinger equations (3.8) and (4.8) corresponding to the two cases: 
respectively the case where the carrier wave frequency lies outside the polariton gap 
and the case where it lies in the vicinity of the upper edge inside the gap. The soliton 
solutions of these equations coincide with the lowest-order expressions of steady pulse 
solutions obtained in I. Also for frequencies inside the gap but not very close to its 
upper edge, a nonlinear Schrodinger equation whose soliton solution coincides with the 
steady solution obtained in I has been derived as a natural generalisation of equation 
(4.8). Introduction of direct interaction between atomic dipoles, on the other hand, 
t The j’-dependent dielectric function can be obtained by eliminating w from equations (3.2) and (3.5) in 11. 
As its closed expression is too complicated, however, we present here only a form of expansion in a power 
series of ]El. 
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stabilises the nonlinear plane wave of polariton in a certain range of frequency near the 
resonance, so that any steady pulse cannot exist in this range. For other frequencies, 
however, the main results remain unchanged irrespective of such an interaction. 

In order that the whole evolution process of self-modulation can be described by a 
nonlinear Schrodinger equation, it is necessary that the amplitude of the incoming pulse 
is sufficiently small, i.e. l€/Al<< 1, and that its time width is sufficiently long, i.e. 
T <</Awl. Such a pulse is in striking contrast to the short pulse which satisfies 
T-' >>/Awl, IAw -0~1 and whose evolution obeys a sine-Gordon equation. By applying 
the initial-value problem of the nonlinear Schrodinger equation studied by Zakharov 
and Shabat to our problem, it has been shown that a long incoming pulse whose carrier 
wave frequency lies outside the polariton gap changes its shape with time and becomes a 
composite pulse of multiple-peak structure, which is regarded as a bound state of the 
steady pulses obtained in I. A pulse whose frequency lies inside the gap, on the other 
hand, cannot enter the medium, unless its amplitude reaches a certain threshold value. 
If it has once come into the medium, it also evolves as an assembly of the steady pulses. 
We have not studied in detail the boundary problem of such a pulse: that is, how a pulse 
gets over the interface of the medium. This problem, as well as the problem of evolution 
of a pulse whose frequency lies inside the gap but not very close to its upper edge, is still 
open for further investigations. 

-1 
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